L

() (a) Line L meets plane P when 2t + 3 + 3(4t - 1) - 22 -0 = 4
1

= t = —.

The required point of intersection is (4, 1, l%)

() @ =20 + 4] - K is parallel to line L, and @ = i + 3f - 2k is
normal to plane P.

If B is the required angle, then

sing = 127l

16
/6

The required angle = 68.9° (nearest 0.1°).

[t}

() b = -4 + 2j + Kk is parallel to line M, and b-#=0.

Therefore, line M is parallel to plane P.

(d) If line L meets line M, the equations

2t + 3 =6 - 4u
44 -1 = 2u
2-t=u-10

must have a unique solution.

From the first and second, ¢t = —, u =

(S
N =

Now, these do not satisfy the third equation (2 - % # l - 10).

2

Therefore, lines L and M do not meet.
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() Method 1

Let A2t + 3, 4t -1, 2 -0 lieon L and
B(6 - 4u, 2u, u - 10) lie on M.

3 -4u -2
Now, AB = |1 + 2u - 4t|. '
-12 +u + 1t
i j k
Also, the vector @ x b = | 2 -1 =6x’+2f+201? is

(S

J
4
-4 2
perpendicular to both lines L and M.

If A and B are the points which are closest together, AB would be

parallel to @ x b.
Therefore, 3 - 4u - 2t =3(1 +2u -4t = 10t - 10u =0
and -12 +u +¢t = 10(1 + 2u ~ 4 = 41t - 19z = 22.

-3
Solving gives 4 =t = 1, and so AB =| -1/|.
-10

Therefore, the shortest distance = /110.

Method 2

@ x b = 6i + 2j + 20k is perpendicular to both lines L and M.

The plane 3x + y + 10z = 28 contains the line L and is parallel
to M.

Now, the required distance is the distance from the point
(6, 0, -10), which lies on M, to this plane.

The required distance = |18 + 0 - 100 - 28| = /110,

V110
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Method 3

3 =37+

7 + 10k is perpendicular to both lines.

AQG, -1, 2) lieson L; B(6, 0, -10) lies on M.

The required distance is the orthogonal projection of AB on

This is

) 3) (3
"“T*"“" . 1 1|1 1]] = yito.
¢ VIO i 1a) {10

(i) (@ I,m = fo" efdt = —¢5 =1 - e*.

® Lx =

© L®

Therefore,

f’t"e"dt
0
[-tme]s + n]:t" “lettdr

-x"e™ + nl _ (x), as required.

-x*e™ + 3L,(x)

-x%e™ + 3(-x%e™ + 2I,(x))

e™ - 3x%e™ + 6(-xe™ + I,(x))
e - 3x2e - 6xe* + 6 - 6e*

L@ =6 - 16e™.

-

w.

NI6\S10\H(2)

41

(A1)

(R1)

(M1)(A1)

4D

M2)

(MDAG

(M1) (A1)



@ fo = L1z

AtA, Inx +1 =0=x=¢"".

Therefore, A= (¢}, 0).

o Fo - LT

x2 x*

and this is zero when x = 1.

Therefore, B = (1, 1).

‘ xz(-l) +2xlnx g
fiewy = x _ x -1
(C) f (x) = x‘ = x3 ’

and this is zero when Inx 2 orx =e

Clearly, f"(x) changes sign at x = ¢"?, and so C = e"?, %c"").

: . y Inx,
(d) The gradient of (OT) = f(xy) = —
)

. Inx,
Therefore, the equation of (OT) is y = — |*

Xo
Note: At T, fi(xp = Jl@
%o
-lnx, 1+ 1nx,
2 2
Xo Xo

2

) ) 1+ lnx,
Hence the equation of OT is y = X.
Xo

Award (M1) (CI)
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(e) Since T lies on both the curve and the tangent line,

1+ lnx, Inx,
= |- Xq. (RI)
X, x:
1
Inx, = ——.
Therefore, x, = e’ 2. M1) (A1)
(f) The x—coordinates are: x, = e, x, = e x, =1, x. = el
x x x
Now, ToB- ¢ e!? which is constant. M1
Xy X X
Therefore, the x~coordinates are 4 consecutive terms of a GP, and
the common ratio is e, (RI) (A1)
(8) The required area = Area of AODT - Area of ADT
= leow(lan) _ foi?l + Inx A2
= 32° (2e)f=" PR 42
1 [1 ,]e ™
== - [=(1 + Inx
2 |2 )] M1) (A1)
_1_11 g
2\4
=1
8 (A1)



3. (i) (a) In 6 experiments, p(exactly 2 successes) = 3p(exactly 3 successes)

= [(€)p21 - p)*
(2)p<1 ?)

6) 3,4 _ 43
3(3)p<1 P

= 15’1 - p)* = 60p*11 - p)’
= 1-p=4dp
= p = _1_

5

(b) p(at least one success in n experiments) > 0.99

(ii)

= 1 - p(no success in n experiments) > 0.99

- 1- (:‘:)" > 0.99
5
4\*
4 < o001
~ (3
= 125" > 100

2

= n> = 20.6
log1.25

Therefore, the least number of times = 21.

(a) Mean = np = 20 x 0.06 = 12.

Standard deviation = ynp(1 - p) = V12 x 0.94 = 3.36.

(b) We require p(X 2 20) = p(l 5 195 - 12]

V1128

= p(Z > 2.233)

1 - p(Z < 2233)

1 - 0.9872

0.0128
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4.

@ @

(®)

i) (@

222 -2 -2i)z-5=0
- 2i ‘/—_—27
Therefore, z = 2 -2« (24 2i)* + 40i
-2 -2 y32i
4

«;-(1 “ i) = /2.
Without loss of generality, we may choose

zi=§(1—i)+,/ﬁandz,=%(lfi)*\/_2—i.

Since (2 - 2i)? = -8i, [see part (a)], (2 + 2i)* = 8i and so
a +i? = 2i.

Therefore, z, = —;—(1 -i) + (@ +1i)and

zz=—;-(1-i)-(l+i).

[or vice versa since {2i = (1 + )]

If z = cos® + isin®, then z* = cosn® + isinnO, and
2™ = cos(-n0) + isin(-n0) = cosn® - isinn6. (De Moivre)

Therefore, z" + —1; = 2cosnB.
z

10
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() 5z%-11z3 + 1622 - 11z +5 =0

11 5

= 5z -11z+16 - = + = =0 (since z # 0)

Z z

- 5[z2+i)-11(z+1)+16=0.
22 z

* Let z = cosO + isinf.

From part (a): 10cos28 - 22cos® + 16 = 0
=  10(2cos’8 - 1) - 22cosB + 16 = 0
= 20cos?0 - 22cosB + 6 = 0
=  10cos?® - 1lcosB + 3 =0

= (5cosB - 3)(2cos6 - 1) =0

= oos0=§orcos9=-l—.
5 2
Therefore, sinB® = i% or sinf = i-‘/g-.
.. 1 . 1 .
This gives: z = §(3 + 4i), 5(1 £ 1ﬁ).

Alternative (from *):

z+—1—=loré
z 5
zz—z+1=0=>z=-1:4:i—3
2 2
or522-6z+5=0=>z=g:ti1
5 5
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5.

@ @
®)
i) ()

N96\S10\H(2)

Section B
a*(x®b) =c¢

c =x®b =b.

K
*

Ol
"

From the * table:

From the @ table: ¢ ® b

]
>

Therefore, x = c. (R3)

@®x)«b=d
From the * table: b *b=d = a® x =b.

From the @ table: no x can be found for which a @ x = b.
Therefore, no x exists. (R3)

[Note: A student who consistently reads the tables in the form
"top row element" * (or &) "left column element" may
be awarded full marks for the answers (a) x = a
(b) x = b.]

a’ba’b

= a®(ba®)b (associativity)

= a’(ab)b (given)

= a’b? (associativity)
= ee (given)
=e (identity) (R3)

12



NI6\S10\H(2)
(b) a’ba

= a(ab)a (associativity)

= a(ba®a (given)

= ab(a@® (associativity)

= abe (given)

= ab (identity) (R3)

(iii) Let ¢: G ~ H be the one-one, onto function such that

¢(( _b))=a +ib. M1I)
b a

a, -b, . a, -b, . ,
Thus - a, + ib, and -~ a, + ib,. (A1)
b, a b, a,
a, -b -b a -bb, -[ab, +ab
Now, 1 ") % T2 _ 18, = byb, ~[a\b, + ab)] , (Al
by a)\b, 9 a\b, + ayb, a,a, - by b,
and (@, + ib) (a, + ib) = (a,a, - b}b) + i(ab, + a,b)). Al
a, -b)(a, -b, . )
Therefore, ¢{[”1 al] [bz . = (@, +ib)(a, + ib). (A1)
Thus, G and H are isomorphic. (R1)

13
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N9E\S10\H(2)

Z, has 4 members {0, 1, 2, 3} and Z has S members M1)
{0, 1, 2, 3, 4}.

Therefore, Z, x Zg has 4 x 5 = 20 members. M1) (41)
(,2) *(1,4) =3 + 1 (mod 4), 2 + 4 (mod 5)) = (0, 1). M1) (AI)

Z, x Zy = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} MD)

Now, (1, 1) = (0, 2); (1, 1)> =(1,0) (1, D* =@, 1);
@, 1’ =1, 2); @, 1® = (0, 0) which is the identity.

Therefore, Z, x Z, is cyclic. (R2)
Both (1, 1) and (1, 2) are generators. (A2)
[0 1® =, 05 (©2° =0 0; (1,27 =, 0)] (R1)
Z, x 2, ={(©,0), © 1), ©2), © 3), 10,41, 12,1 3} M1)

©, 1 = (0, 2); 0, 1> = (0, 3); (0, )* = (0, 0)
©, 37 = (0, 2); (0, 3* = (0, 1); (0, 3)* = (0, 0)
(1,37 =00,2);(1,3°=(@11;3)" =00
(L 12 = (0.2: 1. * = (1, 3% (1, D* = (0, 0)

©, 2?2 =(0, 0). (1,22 = (0, 0). (1, 0) = (0, 0)

Therefore, (0, 1), (0, 3), (1, 1) and (1, 3) all have order 4. (R4) (12)
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6.

@O @

(b)

©

@

(i) ()

®)

01101 11100000000
10111 00111100000
A=[(11111]; B={10001001011
01101 00000101100
11111 01010010110
32333
24424
A?=|34535
32333
34535

An entry a; in A” is the number of different walks between the
vertices v; and v; which passes through exactly one vertex v,
which is the same as the number of paths of length 2 between
v, and v;.

The sum of the entries in the jth column of 4 gives the degree of
the vertex v; provided there is no loop at that vertex. If there is
one or more loops at vertex v;, then deg(v;) =jth col. sum -1 +
2(no. of loops at v), since each loop contributes 2 to thc degree of
the vertex.

Note: Also accept deg(v) = jth col.sum + (no. of loops at v)).

The column sum is 2 for each edge, since it joins exactly two
vertices. The column sum is 1 for a loop.

In any loop-free, undirected graph, the maximum number of edges
Y
is .
H
Hence, e s(v) =l’-£v—2_£ = 2e < v -v.

2

In the loop—~free, directed case, ¢ < v(v - 1) = v -y,

15
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(iii) (a) Consider one vertex. There are (n - 1) possible edges to start the
path. Once we are at the second vertex, we have (n - 2) possible
edges; at the third vertex, (n - 3) edges; at the fourth vertex,

(n - 4) edges. This gives (n - )(n - 2)(n - 3)(n - 4) paths.
Now, we have n vertices to choose as our starting vertex, and,
according to the hint, we have counted each possible path twice.

nn - D(n - 2)(n - 3)(n - 4).

The required no. of paths = )

(b) Let e; be the number of edges in G, a simple undirected graph, and

let e, be the number of edges in G.

Then e, + ¢, = (;) = an_—lz, the number of edges in &,

Since G is self-complementary, ¢; = e,, so

_1fny _ n(n - 1)
« 5 - M

(c) The required example is:

a d a d

G G

The isomorphism from G to G is as follows:

element a b c d

isomorphic image b d a c

16
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2 _
(d) Since G is self-complementary, it has —;-(;) = L4—'—£ edges.

Therefore, 4 | n(n - 1).

Now, if n is even, n - 1 is odd and so 4 | n.

ie.n =4k, ke N". (R2)AG
If (n - 1) iseven, nisodd, andso 4 |(n - 1).

ien-1=4korn=4k+1, ke N". (R2)AG

(iv) Without loss of generality, let the vertices and their degrees be:

vertex a b c d e f g h
degree 1 1 1 2 3 4 5 7

Vertex h has degree 7 and so must be connected to each of the other 7
vertices. Thus, a, b, ¢ cannot be connected to any other vertex other
than A. Vertex g has degree 5. It is connected already to A, and so must
be connected to four other vertices. But there arc only 3 (d, ¢, f)

available. Therefore, no graph can be drawn. (R3) (42)
)
counter vertex used vertex added | weight added | cumulative

1 e 0 0

2 e h 1 1

3 e h d 2 3

4 deh f 2 5

5 defh b 3 8

6 bdefh a 2 10

7 abdefh c 2 12

8 abcdefh g 3 15

9 abcdefgh i 3 18

10 abecdefghi 0 18
Therefore, the minimum cost = $18 m. (M5) (A1)

17



7.

®

(i)

ux e*
x!
where x represents the number of arrivals during a given time interval.

The Poisson distribution with mean u is defined by p{x) =

0,.-3
(a) The required probability = p(0) = 30‘3 =¢3 = 0.0498.
(b) The required probability
_ _3e3  3Pe?
=p) +p@2) = TR T 0.373.

A t—distribution with X = 83.7, s = 129, n = 9 and 8 degrees of
freedom is appropriate here.

Since the standard deviation of the population is unknown, the standard
deviation of X is estimated with —;—_ %9— = 4.3,

n
The critical value associated with a 95% confidence interval in this
two-tailed test is ¢t = 2.306.

Hence, the required interval = |X - S, e S - (73.8, 93.6).
Vn n

. . . s
Note: Some candidates will use instead of —, s

n yn -1

, by using the

unbiased estimator of population variance, viz. sz( 1 1) in
n -

place of s2. Then they will get the following:

Standard deviation of x is estimated with

S_ o129 _ 456

-1 &

The critical value of ¢ here is 2.306.

Hence, the required interval is|¥ - t—>, X + —
vn -1

Jyn -1

= (732, 94.2)

18
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(iii)

@)

Hy:p 204
H, :p<04

25

The sample proportion is p = 100 = 0.25 with mean p = 0.4 and

standard deviation ¢ = ,I SO_%?Q = 0.049.

If we assume a Normal distribution, then the corresponding z-value is

_025-04 _ 400
0.049

Now, p(Z < -3.062) = 0.0011 which is less than 0.01.

Therefore, the claim is rejected.

Let p, be the population mean for tyre 4 and p, that for tyre B. Since
the sample size = 10, the ¢—distribution is appropriate.

The number of degrees of freedom = 9.

(a) For a 95% confidence interval, the appropriate value of ¢ = 2.262.

Hence, i, - pp = 2000 & 2.262 (3010] = 2000 :+ 1430.6

J10
miles.

Therefore, 569 < p, - Bz < 3430 miles

Note: Some candidates will use the unbiased estimator of

population variance viz. sz( ] to estimate the

n -
variance of X. Then they will have
b, - 1y = 2000 + 2.262[&‘;_)0) = 2000 + 1508
9

- 492 s g, — py s 3508 miles.

(b) We can accept Hy if p, — pg = O falls in the 95% confidence
interval. But this is clearly not so. Therefore, H, is rejected.
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8.

®

(@) If e* = x*, then x = 4Inx.

Let f(x) = 4lnx, then fi(x) = 2.

=

Thus, |f/(8)] = 0.5 < 1, and so the given formula may be used.

If e* = x*, then x = e¥*.

Let f(x) = %, then f/(x) = %e"".

Thus, |f(1)] = ie"‘ = 0.32 < 1, and so the formula may be

used.

i X; i x;

0 8 0 1

1 8.3178 1 1.2840
2 8.4736 2 1.3785
3 8.5478 3 14115
4 8.5827 4 1.4231
5 8.5990 5 1.4273
6 8.6066 6 1.4288
7 8.6101 7 1.4293
8 8.6118 8 1.4295
9 8.6125 9 1.4296
10 8.6129 10 1.4296
11 8.6130
12 8.6131
13 8.6131

The required roots are 8.613 and 1.430 (3 dec pl.).
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®) x

©

(d)

(e)

®

fGx,

, = X, - —= where f(x) = e* - x*, and fi(x) = ¢* - 4x°.
fixp

_ el -1)_ . _(1l-e)_ -2-3e
Thus, %, = -1 (c"+4)- ! (l+4e) 1 +4de
1
The area = fol(e" - xHdx = [c" - %x’]o = e -12.
The area = g( £(0) + 4£(0.25) + 2f(0.5) +4f(0.75) + f(1)).
h = 0.25.

Thus, the area = 1.5178 (4 dec. pl.)

_ S £
&—ﬁ)—i—@ where ¢ € [a, b].
180n*

The error term is -

13e€ - 24) < 23
(180) (4% (180)(256)
the minimum value of e° is e = 1.

The error term is - < 0.0005, since

Therefore, the maximum error = 0.0005,

Since estimated value + maximum error = 1.5178 + 0.0005 =
1.5183, and e ~ 1.2 = 1.5183 (4 dec. pl.), the answers to parts (c)
and (d) are consistent with the calculated maximum error.

We require the value of n for which <5 x 1075,

80n*
'Ihus,n‘>%x106=n>l2.6.

Therefore, the required value of n is 14. (n must be even)
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(i) ()

®)

Let f(x) = S X 2 2. It is obvious that f(x) is continuous

x(Inx)
on [2, =) since x(Inx)? is continuous and non-zero on [2, «).

Clearly, f(x) > 0 for x € [2, »).

2x(lnx): + (nx)’ .
Now, fi(x) = - ol - -2+Inx

- - <Qforx>2.
(x(Inx)?)f x?(nx)?

Therefore, f(x) is decreasing on [2, ) and so f(x) satisfies the
conditions under which the Integral Test may be used.

Now, - . lim fb dx
2 x(]nx)Z bow 2x(1nx)2
b
- lim [_LL
b= lnx
= fim (L - L
b-=\In2 Inb
= ..l_ < oo
in2
Therefore, converges.
nz-:Z n(lnn)’

- ol
Let a, = C" Then the series Y el = Y Lis divergent.
n

n »=1 na=l

Also, the sequence {|a,|} is decreasing since

! -l=—l-<0,andlim|an|=lim—1—=0.
n+1 n nn+1) A~ Aew N

Thus, E cy converges.
n

n=1

hd _1\n
Therefore, E cy converges conditionally.
n

n=1
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