1. (i) (a) Line L meets plane P when 2t + 3 + 3(4t - 1) - 2(2 - t) = 4 $\Rightarrow t = \frac{1}{2}.$

The required point of intersection is $(4, 1, 1\frac{1}{2})$. (M1) (A1)

(b) $\vec{a} - 2\vec{i} + 4\vec{j} - \vec{k}$ is parallel to line L, and $\vec{n} = \vec{i} + 3\vec{j} - 2\vec{k}$ is normal to plane P.

If θ is the required angle, then

$$\sin\theta = \frac{|\vec{a} \cdot \vec{n}|}{|\vec{a}||\vec{n}|}$$
$$= \frac{16}{\sqrt{21}\sqrt{14}}$$
$$= \frac{16}{7\sqrt{6}}$$

The required angle = 68.9° (nearest 0.1°).

(M2) (A1)

(c) $\vec{b} = -4\vec{i} + 2\vec{j} + \vec{k}$ is parallel to line M, and $\vec{b} \cdot \vec{n} = 0$.

Therefore, line M is parallel to plane P.

(R1) (A1)

(d) If line L meets line M, the equations

$$2t + 3 = 6 - 4u$$
$$4t - 1 = 2u$$

$$2-t=u-10$$

must have a unique solution.

From the first and second, $t = \frac{1}{2}$, $u = \frac{1}{2}$.

Now, these do not satisfy the third equation $\left(2 - \frac{1}{2} \neq \frac{1}{2} - 10\right)$.

Therefore, lines L and M do not meet.

(M2) (A2)

(e) Method 1

Let A(2t + 3, 4t - 1, 2 - t) lie on L and B(6 - 4u, 2u, u - 10) lie on M.

Now,
$$\vec{AB} = \begin{pmatrix} 3 - 4u - 2t \\ 1 + 2u - 4t \\ -12 + u + t \end{pmatrix}$$
. (M1) (A1)

Also, the vector
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 4 & -1 \\ -4 & 2 & 1 \end{vmatrix} = 6\vec{i} + 2\vec{j} + 20\vec{k}$$
 is perpendicular to both lines \vec{l} and \vec{M} (A1)

perpendicular to both lines L and M

If A and B are the points which are closest together, \vec{AB} would be (R1)parallel to $\vec{a} \times \vec{b}$.

Therefore,
$$3 - 4u - 2t = 3(1 + 2u - 4t) \implies 10t - 10u = 0$$

and
$$-12 + u + t = 10(1 + 2u - 4t) \implies 41t - 19u = 22$$
.

Solving gives u = t = 1, and so $\vec{AB} = \begin{pmatrix} -3 \\ -1 \\ -10 \end{pmatrix}$.

(A1)Therefore, the shortest distance = $\sqrt{110}$.

Method 2

$$\vec{a} \times \vec{b} = 6\vec{i} + 2\vec{j} + 20\vec{k}$$
 is perpendicular to both lines L and M. (A1)

The plane
$$3x + y + 10z = 28$$
 contains the line L and is parallel to M. (R1)

Now, the required distance is the distance from the point (6, 0, -10), which lies on M, to this plane.

The required distance =
$$\frac{|18 + 0 - 100 - 28|}{\sqrt{110}} = \sqrt{110}$$
, (M2) (A1)

Method 3

$$\vec{\omega} = 3\vec{i} + \vec{j} + 10\vec{k}$$
 is perpendicular to both lines. (A1)

$$A(3, -1, 2)$$
 lies on L ; $B(6, 0, -10)$ lies on M . (A1)

The required distance is the orthogonal projection of \vec{AB} on $\vec{\omega}$. (R1)

This is
$$\frac{|\vec{AB} \cdot \vec{\omega}|}{|\vec{\omega}|} = \frac{1}{\sqrt{110}} \begin{vmatrix} 3 \\ 1 \\ 12 \end{vmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 10 \end{vmatrix} = \sqrt{110}.$$
 (M1)(A1)

(ii) (a)
$$I_0(x) = \int_0^x e^{-t} dt = -e^{-t} \Big|_0^x = 1 - e^{-x}$$
. (A1)

(b)
$$I_n(x) = \int_0^x t^n e^{-t} dt$$

$$= \left[-t^n e^{-t} \right]_0^x + n \int_0^x t^{n-1} e^{-t} dt \qquad (M2)$$

$$= -x^n e^{-x} + n I_{n-1}(x), \text{ as required.} \qquad (M1)AG$$

(c)
$$I_3(x) = -x^3 e^{-x} + 3I_2(x)$$

$$= -x^3 e^{-x} + 3(-x^2 e^{-x} + 2I_1(x))$$

$$= -x^3 e^{-x} - 3x^2 e^{-x} + 6(-x e^{-x} + I_0(x))$$

$$= -x^3 e^{-x} - 3x^2 e^{-x} - 6x e^{-x} + 6 - 6e^{-x}$$
Therefore, $I_3(1) = 6 - 16e^{-1}$. (M1) (A1)

2. (a)
$$f(x) = \frac{1 + \ln x}{x}$$

At A,
$$\ln x + 1 = 0 \Rightarrow x = e^{-1}$$
.

Therefore,
$$A = (e^{-1}, 0)$$
. (M1) (A1)

(b)
$$f'(x) = \frac{x(\frac{1}{x}) - (1 + \ln x)}{x^2} = \frac{-\ln x}{x^2}$$
, (A2)

and this is zero when x = 1.

Therefore,
$$B = (1, 1)$$
. (M1) (A1)

(c)
$$f''(x) = \frac{x^2(-\frac{1}{x}) + 2x \ln x}{x^4} = \frac{2 \ln x - 1}{x^3},$$
 (A2)

and this is zero when
$$\ln x = \frac{1}{2}$$
 or $x = e^{1/2}$. (A1)

Clearly,
$$f''(x)$$
 changes sign at $x = e^{1/2}$, and so $C = (e^{1/2}, \frac{3}{2}e^{-1/2})$. (M1) (A1)

(d) The gradient of
$$(OT) = f'(x_0) = -\frac{\ln x_0}{x_0^2}$$
. (M1)

Therefore, the equation of (OT) is
$$y = \left(-\frac{\ln x_0}{x_0^2}\right)x$$
. (A1)

Note: At T, $f'(x_0) = \frac{f(x_0)}{x_0}$.

$$\therefore \frac{-\ln x_0}{x_0^2} = \frac{1 + \ln x_0}{x_0^2}$$

Hence the equation of OT is $y = \left(\frac{1 + \ln x_0}{x_0^2}\right)x$.

Award (M1) (C1)

(e) Since T lies on both the curve and the tangent line,

$$\frac{1 + \ln x_0}{x_0} = \left(-\frac{\ln x_0}{x_0^2}\right) x_0. \tag{R1}$$

$$\Rightarrow \ln x_0 - -\frac{1}{2}.$$

Therefore,
$$x_0 = e^{-1/2}$$
. (M1) (A1)

(f) The x coordinates are: $x_A = e^{-1}$, $x_T = e^{-1/2}$, $x_B = 1$, $x_C = e^{1/2}$

Now,
$$\frac{x_T}{x_A} = \frac{x_B}{x_T} = \frac{x_C}{x_B} = e^{1/2}$$
, which is constant. (M1)

Therefore, the x-coordinates are 4 consecutive terms of a GP, and the common ratio is $e^{1/2}$. (R1) (A1)

(g) The required area = Area of $\triangle ODT$ - Area of ADT

$$= \frac{1}{2} e^{-1/2} \left(\frac{1}{2} e^{1/2} \right) - \int_{e^{-1}}^{e^{-1/2}} \frac{1 + \ln x}{x} dx$$
 (A2)

$$-\frac{1}{4} \left[\frac{1}{2}(1 + \ln x)^2\right]_{e^{-1}}^{e^{-1/2}} \tag{M1) (A1)}$$

$$= \frac{1}{4} - \frac{1}{2} \left(\frac{1}{4} - 0 \right)$$

$$=\frac{1}{8} \tag{A1}$$

3. (i) (a) In 6 experiments, p(exactly 2 successes) = 3p(exactly 3 successes)

$$\Rightarrow \binom{6}{2} p^2 (1-p)^4 = 3 \binom{6}{3} p^3 (1-p)^3 \tag{M2}$$

$$\Rightarrow$$
 15 $p^2(1 - p)^4 = 60p^3(1 - p)^3$

$$\Rightarrow 1 - p = 4p$$

$$\Rightarrow \qquad p = \frac{1}{5} \tag{A2}$$

(b) p(at least one success in n experiments) > 0.99

$$\Rightarrow 1 - p(\text{no success in } n \text{ experiments}) > 0.99$$
 (M1)

$$\Rightarrow 1 - \left(\frac{4}{5}\right)^n > 0.99$$

$$\Rightarrow \left(\frac{4}{5}\right)^n < 0.01 \tag{A1}$$

$$\Rightarrow 1.25^{\circ} > 100 \tag{A1}$$

$$\Rightarrow n > \frac{2}{\log 1.25} \approx 20.6 \tag{A1}$$

Therefore, the least number of times =
$$21$$
. (A1)

(ii) (a) Mean = $np = 20 \times 0.06 = 12$.

Standard deviation =
$$\sqrt{np(1-p)} = \sqrt{12 \times 0.94} = 3.36$$
. (A2)

(b) We require
$$p(X \ge 20) = p\left(Z > \frac{19.5 - 12}{\sqrt{11.28}}\right)$$
 (A2)

$$= p\left(Z > 2.233\right) \tag{A1}$$

$$= 1 - p(Z < 2.233) \tag{A1}$$

$$= 1 - 0.9872$$

$$= 0.0128 \tag{A1}$$

4. (i) (a)
$$2z^2 - (2 - 2i)z - 5i = 0$$

Therefore,
$$z = \frac{2 - 2i \pm \sqrt{(2 - 2i)^2 + 40i}}{4}$$

$$= \frac{2 - 2i \pm \sqrt{32i}}{4}$$

$$= \frac{1}{2}(1 - i) \pm \sqrt{2i}.$$
(M1) (A2)

Without loss of generality, we may choose

$$z_i = \frac{1}{2}(1 - i) + \sqrt{2i}$$
 and $z_2 = \frac{1}{2}(1 - i) - \sqrt{2i}$.

(b) Since
$$(2 - 2i)^2 = -8i$$
, [see part (a)], $(2 + 2i)^2 = 8i$ and so $(M1)$ (A1)

Therefore, $z_1 = \frac{1}{2}(1 - i) + (1 + i)$ and $z_2 = \frac{1}{2}(1 - i) - (1 + i)$.

i.e.
$$z_1 = \frac{3}{2} + \frac{1}{2}i$$
 and $z_2 = -\frac{1}{2} - \frac{3}{2}i$. (M1) (A1)

[or vice versa since $\sqrt{2i} = \pm (1 + i)$]

(ii) (a) If
$$z = \cos\theta + i\sin\theta$$
, then $z^n = \cos n\theta + i\sin n\theta$, and
$$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$$
. (De Moivre) (M1) (A1)

Therefore,
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
. (M1)AG

(b)
$$5z^4 - 11z^3 + 16z^2 - 11z + 5 = 0$$

$$\Rightarrow 5z^2 - 11z + 16 - \frac{11}{z} + \frac{5}{z^2} = 0 \text{ (since } z \neq 0)$$
(M1) (R1)

$$\Rightarrow 5\left(z^2 + \frac{1}{z^2}\right) - 11\left(z + \frac{1}{z}\right) + 16 = 0.$$

* Let $z = \cos \theta + i \sin \theta$.

From part (a): $10\cos 2\theta - 22\cos \theta + 16 = 0$

$$\Rightarrow$$
 10(2cos² \theta - 1) - 22cos \theta + 16 = 0

$$\Rightarrow 20\cos^2\theta - 22\cos\theta + 6 = 0$$

$$\rightarrow 10\cos^2\theta - 11\cos\theta + 3 = 0$$

$$\Rightarrow (5\cos\theta - 3)(2\cos\theta - 1) = 0$$

$$\Rightarrow \cos\theta = \frac{3}{5} \text{ or } \cos\theta = \frac{1}{2}. \tag{M2}$$

Therefore, $\sin \theta = \pm \frac{4}{5}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$.

This gives:
$$z = \frac{1}{5}(3 \pm 4i), \frac{1}{2}(1 \pm i\sqrt{3}).$$
 (A2)

Alternative (from *):

$$w = z + \frac{1}{z} \implies z^2 + \frac{1}{z^2} = w^2 - 2$$

$$5w^2 - 11w + 6 = 0 = (5w - 6)(w - 1)$$

$$\therefore z + \frac{1}{z} = 1 \text{ or } \frac{6}{5}$$

$$z^2 - z + 1 = 0 \Rightarrow z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

or
$$5z^2 - 6z + 5 = 0 \implies z = \frac{3}{5} \pm \frac{4}{5}i$$

Section B

5. (i) (a) $a * (x \otimes b) = c$

From the * table: $a * b = c \implies x \otimes b = b$.

From the \otimes table: $c \otimes b = b$.

Therefore, x = c. (R3)

(b) $(a \otimes x) * b = d$

From the * table: $b * b = d \Rightarrow a \otimes x = b$.

From the \otimes table: no x can be found for which $a \otimes x = b$.

Therefore, no r exists. (R3)

[Note: A student who consistently reads the tables in the form "top row element" * (or \otimes) "left column element" may be awarded full marks for the answers (a) x = a (b) x = b.]

(ii) (a) a^2ba^2b

$$= a^2(ba^2)b$$
 (associativity)

$$= a^2(ab)b$$
 (given)

$$= a^3b^2$$
 (associativity)

= e (identity) (R3)

(b)
$$a^2ba$$

$$= a(ba^2)a$$
 (given)

$$= ab(a^3)$$
 (associativity)

$$= abe$$
 (given)

$$= ab$$
 (identity) (R3)

(iii) Let ϕ : $G \rightarrow H$ be the one-one, onto function such that

$$\Phi\begin{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \end{pmatrix} = a + ib.$$
(M1)

Thus
$$\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} \rightarrow a_1 + ib_1$$
 and $\begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix} \rightarrow a_2 + ib_2$. (A1)

Now,
$$\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 - b_1 b_2 & -[a_1 b_2 + a_2 b_1] \\ a_1 b_2 + a_2 b_1 & a_1 a_2 - b_1 b_2 \end{pmatrix}$$
, (A1)

and
$$(a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$
. (A1)

Therefore,
$$\phi \left(\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix} \right) = (a_1 + ib_1)(a_2 + ib_2).$$
 (A1)

Thus,
$$G$$
 and H are isomorphic. (R1)

(iv) (a)
$$Z_4$$
 has 4 members $\{0, 1, 2, 3\}$ and Z_5 has 5 members $\{0, 1, 2, 3, 4\}$.

Therefore,
$$Z_4 \times Z_5$$
 has $4 \times 5 = 20$ members. (M1) (A1)

$$(3, 2) * (1, 4) = (3 + 1 \pmod{4}, 2 + 4 \pmod{5}) = (0, 1).$$
 (M1) (A1)

(b)
$$Z_2 \times Z_3 = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}$$
 (M1)

Now,
$$(1, 1)^2 = (0, 2)$$
; $(1, 1)^3 = (1, 0)$; $(1, 1)^4 = (0, 1)$; $(1, 1)^5 = (1, 2)$; $(1, 1)^6 = (0, 0)$ which is the identity.

Therefore,
$$Z_2 \times Z_3$$
 is cyclic. (R2)

$$[(0, 1)^3 = (0, 0); (0, 2)^3 = (0, 0); (1, 2)^2 = (0, 0)]$$
 (R1)

(c)
$$Z_2 \times Z_4 = \{(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)\}$$
 (M1)

$$(0, 1)^2 = (0, 2); (0, 1)^3 = (0, 3); (0, 1)^4 = (0, 0)$$

$$(0, 3)^2 = (0, 2); (0, 3)^3 = (0, 1); (0, 3)^4 = (0, 0)$$

$$(1, 3)^2 = (0, 2); (1, 3)^3 = (1, 1); (1, 3)^4 = (0, 0)$$

$$(1, 1)^2 = (0, 2); (1, 1)^3 = (1, 3); (1, 1)^4 = (0, 0)$$

$$(0, 2)^2 = (0, 0)$$
. $(1, 2)^2 = (0, 0)$. $(1, 0)^2 = (0, 0)$

Therefore, (0, 1), (0, 3), (1, 1) and (1, 3) all have order 4. (R4) (A2)

(A2) (-1 per error to a max. of two).

(A2) (-1 per error to a max. of two).

(b)
$$A^{2} = \begin{pmatrix} 3 & 2 & 3 & 3 & 3 \\ 2 & 4 & 4 & 2 & 4 \\ 3 & 4 & 5 & 3 & 5 \\ 3 & 2 & 3 & 3 & 3 \\ 3 & 4 & 5 & 3 & 5 \end{pmatrix}$$

(A2) (-1 per error to a max. of two).

An entry a_{ij} in A^2 is the number of different walks between the vertices v_i and v_j which passes through exactly one vertex v_k which is the same as the number of paths of length 2 between v_i and v_j .

(A1)

(c) The sum of the entries in the jth column of A gives the degree of the vertex v_j provided there is no loop at that vertex. If there is one or more loops at vertex v_j , then $\deg(v_j) = j$ th col. sum $-1 + 2(nv. of loops at <math>v_j)$, since each loop contributes 2 to the degree of the vertex.

(R1) (A1)

Note: Also accept $deg(v_i) = jth \ col.sum + (no. of loops at <math>v_j$)

(d) The column sum is 2 for each edge, since it joins exactly two vertices. The column sum is 1 for a loop.

(R1) (A1)

(ii) (a) In any loop-free, undirected graph, the maximum number of edges is $\binom{v}{2}$.

(A1)

Hence,
$$e \le {v \choose 2} = \frac{v(v-1)}{2} \Rightarrow 2e \le v^2 - v$$
. (A3)AG

(b) In the loop-free, directed case, $e \le v(v - 1) = v^2 - v$.

(A2)

(iii) (a) Consider one vertex. There are (n - 1) possible edges to start the path. Once we are at the second vertex, we have (n - 2) possible edges; at the third vertex, (n - 3) edges; at the fourth vertex, (n - 4) edges. This gives (n - 1)(n - 2)(n - 3)(n - 4) paths. Now, we have n vertices to choose as our starting vertex, and, according to the hint, we have counted each possible path twice.

The required no. of paths =
$$\frac{n(n-1)(n-2)(n-3)(n-4)}{2}$$
. (R1) (A1)

(b) Let e_1 be the number of edges in G, a simple undirected graph, and let e_2 be the number of edges in \overline{G} .

Then
$$e_1 + e_2 = {n \choose 2} = \frac{n(n-1)}{2}$$
, the number of edges in k_n .

Since G is self-complementary,
$$e_1 = e_2$$
, so
$$e_1 = \frac{1}{2} \binom{n}{2} = \frac{n(n-1)}{4}.$$
 (R2) (A2)

(c) The required example is:

The isomorphism from G to \overline{G} is as follows:

element	а	b	с	d
isomorphic image	b	d	а	с

(A2)

(d) Since G is self-complementary, it has
$$\frac{1}{2} \binom{n}{2} = \frac{n^2 - n}{4}$$
 edges.

Therefore, $4 \mid n(n-1)$.

Now, if n is even, n-1 is odd and so $4 \mid n$.

i.e.
$$n = 4k$$
, $k \in N^*$. (R2)AG

If (n-1) is even, n is odd, and so $4 \mid (n-1)$.

i.e.
$$n-1=4k$$
 or $n=4k+1$, $k \in N^*$. (R2)AG

(iv) Without loss of generality, let the vertices and their degrees be:

vertex	а	b	с	d	e	f	g	h
degree	1	1	1	2	3	4	5	7

Vertex h has degree 7 and so must be connected to each of the other 7 vertices. Thus, a, b, c cannot be connected to any other vertex other than h. Vertex g has degree 5. It is connected already to h, and so must be connected to four other vertices. But there are only 3 (d, e, f) available. Therefore, no graph can be drawn.

(R3) (A2)

(v)

counter	vertex used	vertex added	weight added	cumulative	
1		e	0	0	
2	е	h	1	1	
3	e, h	d	2	3	
4	d, e, h	f	2	5	
5	d, e, f, h	b	3	8	
6	b, d, e, f, h	а	2	10	
7	a, b, d, e, f, h	с	2	12	
8	a, h, c, d, e, f, h	g	3	15	
9	a, b, c, d, e, f, g, h	i	3	18	
10	a, b, c, d, e, f, g, h, i		0	18	

Therefore, the minimum cost = \$18 m.

(M5) (A1)

7. (i) The Poisson distribution with mean μ is defined by $p(x) = \frac{\mu^x e^{-x}}{x!}$ where x represents the number of arrivals during a given time interval.

(a) The required probability
$$-p(0) - \frac{3^0 e^{-3}}{0!} - e^{-3} - 0.0498$$
. (M3) (A1)

- (b) The required probability $= p(1) + p(2) = \frac{3e^{-3}}{1!} + \frac{3^2e^{-3}}{2!} = 0.373.$ (M3) (A1)
- (ii) A t-distribution with $\bar{x} = 83.7$, s = 12.9, n = 9 and 8 degrees of freedom is appropriate here. (R1) (A1)

Since the standard deviation of the population is unknown, the standard deviation of \bar{x} is estimated with $\frac{s}{\sqrt{n}} = \frac{12.9}{3} = 4.3$. (R1) (A1)

The critical value associated with a 95% confidence interval in this two-tailed test is t = 2.306. (A2)

Hence, the required interval =
$$\left(\overline{x} - t \frac{s}{\sqrt{n}}, \overline{x} + t \frac{s}{\sqrt{n}}\right) = (73.8, 93.6)$$
. (M2) (A2)

Note: Some candidates will use instead of $\frac{s}{\sqrt{n}}$, $\frac{s}{\sqrt{n-1}}$, by using the unbiased estimator of population variance, viz. $s^2\left(\frac{n}{n-1}\right)$ in place of s^2 . Then they will get the following:

Standard deviation of \bar{x} is estimated with

$$\frac{s}{\sqrt{n-1}} = \frac{12.9}{\sqrt{8}} = 4.56 \tag{R1) (A1)}$$

The critical value of t here is 2.306. (A2)

Hence, the required interval is
$$\left(\overline{x} - t - \frac{s}{\sqrt{n-1}}, \overline{x} + \frac{t}{\sqrt{n-1}}\right)$$

$$= (73.2, 94.2) \qquad (M2) (A2)$$

(iii)
$$H_0: p \ge 0.4$$

 $H_1: p < 0.4$

The sample proportion is
$$p = \frac{25}{100} = 0.25$$
 with mean $\mu = 0.4$ and (A1)

standard deviation
$$\sigma = \sqrt{\frac{(0.4)(0.6)}{100}} = 0.049$$
. (A2)

If we assume a Normal distribution, then the corresponding z-value is
$$z = \frac{0.25 - 0.4}{0.049} = -3.062.$$
 (R1) (A2)

Now,
$$p(Z < -3.062) = 0.0011$$
 which is less than 0.01. (A2)

(iv) Let μ_A be the population mean for tyre A and μ_B that for tyre B. Since the sample size = 10, the t-distribution is appropriate.

The number of degrees of freedom =
$$9$$
. (R2)

(a) For a 95% confidence interval, the appropriate value of t = 2.262. (A2)

Hence,
$$\mu_A - \mu_B = 2000 \pm 2.262 \left(\frac{2000}{\sqrt{10}}\right) = 2000 \pm 1430.6$$
 (R1) (A3) miles.

Therefore,
$$569 \le \mu_A - \mu_B \le 3430$$
 miles (A2)

Note: Some candidates will use the unbiased estimator of population variance viz. $s^2\left(\frac{n}{n-1}\right)$ to estimate the variance of \bar{x} . Then they will have

$$\mu_A - \mu_B = 2000 + 2.262 \left(\frac{2000}{\sqrt{9}}\right) = 2000 \pm 1508$$

$$\therefore 492 \le \mu_A - \mu_B \le 3508 \text{ miles}. \tag{42}$$

(b) We can accept H_0 if $\mu_A - \mu_B - 0$ falls in the 95% confidence interval. But this is clearly not so. Therefore, H_0 is rejected.

(R1) (A1)

8. (i) (a) If
$$e^x = x^4$$
, then $x = 4 \ln x$.

Let
$$f(x) = 4 \ln x$$
, then $f'(x) = \frac{4}{x}$. (A1)

Thus, |f'(8)| = 0.5 < 1, and so the given formula may be used.

If
$$e^x = x^4$$
, then $x = e^{x/4}$. (R1) (M1)

Let
$$f(x) = e^{x/4}$$
, then $f'(x) = \frac{1}{4}e^{x/4}$. (A1)

Thus,
$$|f'(1)| = \frac{1}{4}e^{1/4} \approx 0.32 < 1$$
, and so the formula may be (R1) (M1) used.

i	x_i	i	x_i
0	8	0	1
1	8.3178	1	1.2840
2	8.4736	2	1.3785
3	8.5478	3	1.4115
4	8.5827	4	1.4231
5	8.5990	5	1.4273
6	8.6066	6	1.4288
7	8.6101	7	1.4293
8	8.6118	8	1.4295
9	8.6125	9	1.4296
10	8.6129	10	1.4296
11	8.6130		
12	8.6131		
13	8.6131		

The required roots are 8.613 and 1.430 (3 dec pl.).

(A2)

(b)
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 where $f(x) = e^x - x^4$, and $f'(x) = e^x - 4x^3$. (M1) (A1)

Thus,
$$x_1 = -1 - \left(\frac{e^{-1} - 1}{e^{-1} + 4}\right) = -1 - \left(\frac{1 - e}{1 + 4e}\right) = \frac{-2 - 3e}{1 + 4e}$$
. (A2)

(c) The area =
$$\int_0^1 (e^x - x^4) dx = \left[e^x - \frac{1}{5} x^5 \right]_0^1 = e - 1.2$$
. (M1) (A2)

(d) The area
$$\approx \frac{h}{3}(f(0) + 4f(0.25) + 2f(0.5) + 4f(0.75) + f(1)),$$

$$h = 0.25.$$
(M2)

Thus, the area =
$$1.5178$$
 (4 dec. pl.) (A1)

(e) The error term is
$$-\frac{(b-a)^5 f^{(4)}(c)}{180 n^4}$$
 where $c \in [a, b]$. (A3)

The error term is
$$-\frac{1^5(e^c - 24)}{(180)(4^4)} \le \frac{23}{(180)(256)} < 0.0005$$
, since (R1) (A1)

the minimum value of e^c is $e^0 = 1$.

Therefore, the maximum error =
$$0.0005$$
. (A1)

Since estimated value + maximum error =
$$1.5178 + 0.0005 = 1.5183$$
, and e - $1.2 = 1.5183$ (4 dec. pl.), the answers to parts (c) and (d) are consistent with the calculated maximum error. (A1)

(f) We require the value of n for which
$$\frac{23}{180n^4} < 5 \times 10^{-6}$$
. (A1)

Thus,
$$n^4 > \frac{23}{900} \times 10^6 \Rightarrow n > 12.6$$
. (A2)

Therefore, the required value of
$$n$$
 is 14. (n must be even) (R1) (A1)

(ii) (a) Let
$$f(x) = \frac{1}{x(\ln x)^2}$$
, $x \ge 2$. It is obvious that $f(x)$ is continuous

on
$$[2, \infty)$$
 since $x(\ln x)^2$ is continuous and non-zero on $[2, \infty)$.

Clearly,
$$f(x) > 0$$
 for $x \in [2, \infty)$. (A1)

Now,
$$f'(x) = -\frac{2x(\ln x)\frac{1}{x} + (\ln x)^2}{(x(\ln x)^2)^2} = -\frac{2 + \ln x}{x^2(\ln x)^3} < 0 \text{ for } x > 2.$$
 (A1)

Therefore, f(x) is decreasing on $[2, \infty)$ and so f(x) satisfies the conditions under which the Integral Test may be used. (A1)

Now,
$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{2}} = \lim_{b \to \infty} \int_{2}^{b} \frac{dx}{x(\ln x)^{2}}$$
$$= \lim_{b \to \infty} \left[-\frac{1}{\ln x} \right]_{2}^{b}$$
$$= \lim_{b \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln b} \right)$$
$$= \frac{1}{\ln 2} < \infty.$$

Therefore,
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 converges. (M1) (A1)

(b) Let
$$a_n = \frac{(-1)^n}{n}$$
. Then the series $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. (A1)

Also, the sequence $\{|a_n|\}$ is decreasing since

$$\frac{1}{n+1} - \frac{1}{n} = \frac{-1}{n(n+1)} < 0, \text{ and } \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{n} = 0.$$
 (R1)

Thus,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converges. (A1)

Therefore,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converges conditionally. (A1)AG